Detailinformationen
Zerlegung in fast disjunkte Teilmengen [Studie] Universitäts- und Landesbibliothek Bonn Nachlass Hausdorff Signatur: NL Hausdorff : Kapsel 36: Fasz.434
Zerlegung in fast disjunkte Teilmengen [Studie] Universitäts- und Landesbibliothek Bonn ; Nachlass Hausdorff
Signatur: NL Hausdorff : Kapsel 36: Fasz.434
Hausdorff, Felix (1868-1942) [Verfasser]
[Bonn], 01.09.1932. - 2 Bll.. - Werk
Sicherheitsfilm vhd.
Inhaltsangabe: Inhalt: Unter der Voraussetzung, daß die verallgemeinerte Kontinuumhypothese $2^\alephnu-1 = \aleph\nu$ gilt, kann eine Menge $F$ der Mächtigkeit $\aleph\nu$ in $2^\aleph\nu$ fast disjunkte Teilmengen zerlegt werden. \glqq fast disjunkt \grqq bedeutet dabei, daß je zwei Teilmengen einen Durchschnitt von der Mächtigkeit $( \aleph\nu$ haben.Mengenlehre, Ordnungstypen, Pantachien, verallgemeinerte Kontinuumhypothese, fast disjunkte Zerlegung
Bemerkung: Felix Hausdorff Vgl. Bem. bei Fasz.430.
Ausreifungsgrad: Hs.Ms.
Pfad: Nachlass Hausdorff
[Inventarnr.: Hs. 1980/4 (Frühere Signatur)]
DE-611-HS-2709011, http://kalliope-verbund.info/DE-611-HS-2709011
Erfassung: 24. August 1994 ; Modifikation: 18. Februar 2014 ; Synchronisierungsdatum: 2025-07-08T16:39:57+01:00